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1. INTRODUCTION

In recent years, the effect of a particles and other ions passing

through semiconductors has been a subject of intense interest. In 1978,
May and Woods* showed that so-called soft errors or upsets in micro-
electronic circuits were sometimes caused by a particles from radio-
active contaminants in the ceramic packaging around the circuit. When
such a particle passes through a silicon (Si) chip, it generates a large
number of electron-hole pairs. Sometimes enough charge is collected to
upset a memory element (that is, to change its state). Since this
effect was identified, several other investigators2- 5 have studied the
effects of other kinds of cosmic rays and other charged particles in
semiconductors.

In this study, we consider the effects of heavy charged particles in

insulating silicon dioxide (SiO2 ) films rather than in semiconductors.
Amorphous Si02 is an insulator of great fundamental interest because it
has a high dielectric strength and its electronic properties have been

studied at fields an order of magnitude or more higher than most other
insulators.6 Thermally grown Si0 2 is also a material of great practical
interest because of its role in metal-oxide-semiconductor (MOS) micro-
electronic circuits and in integrated optics. It has long been known
that Si0 2 is extremely sensitive to ionizing radiation, and its response
to electron beam and gamma radiation has been studied extensively.
References 7 to 11 are a representative but far from complete bibli-
ography. Thus, there are fundamental reasons as well as practical
reasons to study the effects of heavy charged particles in thin films of
amorphous Si0 2.

In the work reported here, we conducted a series of experiments in
which MOS capacitors were exposed to a beam of ions, and the fraction of

charge escaping recombination was determined. Then we adapted the Jaffd
columnar recombination model to fit a curve to the experimental results
with reasonably good agreement. The model can be used to calculate the
recombination for particles and energies different from those used in
the experiments. Both the experiments and the model are discussed in
detail in this report.

2. HISTORICAL BACKGROUND

The problem of ionization of insulators by radiation is among the

oldest in modern physics. The theory of ionization and recombination in
gases was first based on the assumption of uniform ionization throughout
the total volume of the gas. Bragg and Kleeman 12' 13 were the first to
show that for a particle irradiation, the recombination is much stronger
than can be explained by a theory based on uniform ionization. They

*See references in Literature Cited section.
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both tried to explain their results in terms of an "initial recombina-
tion" model (also now called geminate recombination), which assumed that
ions in a pair originating from the same molecule have a strong special
tendency to recombine with each other. This gemi.,ate recombination
model has been further developed by Smoluchowski,1 4 Onsager,15 and
others,16 - 19 and it has proved useful in treating many problems,
although some problems seem to require more complicated analysis.2 0- 2 3

However, Moulin24'2 5 showed that it did not apply to a particles in
gases.

Langevin2 6'2 7 was the first to realize that the ionization produced
by a particles was in extremely dense columns about the particle track
so that the recombination would be much stronger than predicted by a
theory based on uniform ionization. Langevin argued that the recombina-
tion was governed by the following equation:

3n
--= -an~n_ , (1)

where nt is the density of positive (or negative) charge. He also
obtained an analytical expression for the recombination coefficient a.
The results obtained by Moulin were consistent with the Langevin
hypothesis.

The Langevin theory was refined by Jaffg in a classic paper in
1913.28 Jafffi added a diffusion term to account for random thermal
motion and a drift term to account for the effect of a constant external
field to the Langevin equation (1). Thus, the evolution of the columns
of charge produced by an a particle is described by the following
differential equation:

n = DV 2n T E TT an n_ (2)at i + a

where the a particle travels along the z-axis, D is the diffusion
coefficient, p is the mobility of the charged particles, and E is the
component of the field in the x-direction. D and p may be different for
the positive and negative species. Jaff4 was not able to solve this
equation exactly, so he neglected the recombination term and solved the
rest of the equation, getting the standard diffusion result. Then he
reintroduced the effect of the recombination term by letting the total
number of charges, N, vary with time, t. By this procedure, he obtained
the following approximate expression for the amount of charge escaping
recombination:

2) 4w e 4 bE sin I(3)
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where

Y is the yield of charge (fraction escaping recombination),
N o is the total number of ion pairs per centimeter,
e is the electron charge,
c is the relative dielectric constant of the medium,

co is the permittivity of free space,
b is the effective column radius,
E is the total applied field,

e is the angle between the field and the particle track.

Since No and b were not known in 1913, Jaff6 treated them as adjustable
parameters, and he was able to obtain good fits of equation (3) to his
original experiments and also to a later series of experiments.

2 9' 30

Jafff did most of his experiments with gases, although he also
worked briefly with organic liquids. Gerritsen 3 1' 32 did a series of
experiments with a particles passing through liquified gases, and he
obtained results that did not agree very well with Jaff6's approximate

solution (eq 3). In an effort to explain Gerritsen's results,
Kramers3 3 developed a different approximate solution to Jaff6's
differential equation (eq 2). Kramers neglected the diffusion term and
obtained an analytical solution to the remaining equation. Then he
attempted to reintroduce the effect of the diffusion term. This pro-
cedure was not very satisfying since the diffusion correction is

unphysical, and the agreement between Kramers' theory and Gerritsen's
experiments also was not as good as one could wish.

One can see from the preceding discussion that the ionization

produced by a particles passing through matter is an old problem that
has been studied extensively. A great deal has been learned, but
significant questions remain even for materials that were studied in the
past. Fbr a fundamentally different material such as thermally grown
SiO2 , very little is known with certainty until experiments are
performed.

3. EXPERIMENTAL PROCEDURE AND RESULTS

In our experiments, we used dry oxide MOS capacitors on n-type Si
prepared by Hughes Aircraft Corp. The samples had an oxide thickness of
135 nm and an electrode area of 0.0032 cm2 (0.025-in. diameter). The

electrodes were thin aluminum (105 nm thick) with bonding pads on the
edge for electrical contact. The samples were mounted on TO-5 headers,
and electrical contact was made by thermocompression gold wire bond.

The samples were irradiated under positive bias at approximately

liquid nitrogen temperature (-77 K). The samples were mounted in a

9
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copper (Cu) cold finger, which was in contact with a liquid nitrogen
reservoir. The temperature was monitored with a Cu-constantan thermo-
couple.

When an ion or any ionizing radiation passes through the SiO 2 film,
it loses energy by creating electron-hole pairs. At liquid nitrogen
temperature, the electrons are swept out of the SiO 2 almost instan-
taneously, but the holes have only a negligible mobility. Fbr example,
Hughes has shown 0 that the electrons have a mobility of 20 cm2/V-s at
room temperature and 40 cm2/V-s extrapolated to liquid nitrogen temper-
ature. Thus, for fields on the order of 106 V/cm and an SiO 2 thickness
on the order of 10- 5 cm, all the electrons are swept out of the SiO 2 in
less than I ps both at room temperature and at 77 K.

The holes, on the other hand, have a much lower mobility, and they
do not move by a conventional "drift" process. The holes move by a
dispersive hopping process, which has been extensively studied7 "34'3 5

and which has been shown to be both temperature dependent 36 and field
dependent.37  At liquid nitrogen temperature, the mobility of the holes
is 10- 1 1 cm2/V-s or less, depending on the applied field. It has been
shown8 that hole transport is negligible at times of 100 s or even more
at applied fields of 2 MV/cm or less. At an applied field of 3 MV/cm,
the transport is not a large effect, but it is detectable. Thus, the
electrons are removed from the SiO 2 "instantaneously," and the holes are
frozen in place for times long compared with the experimental times. At
room temperature, on the other hand, significant hole transport would
occur during the experiment, and the results would be difficult to
interpret.

The a particle and proton irradiations were carried out at the Naval
Surface Weapons Center (NSWC) Van de Graaff facility. The a particles
had a kinetic energy of 2 MeV, and the protons had a kinetic energy of
700 keV. In both irradiations, the beam was brought into the test cham-
ber and scattered by a 200-nm Cu foil. The particle flux was determined
by using two surface barrier detectors: one was in the sample position
(about 6 deg above the beam axis), and the second (monitor) detector was
off at a large angle (>45 deg) from the beam axis (fig. 1). The ratio
of counts in the two detectors was nearly constant in a series of cali-
bration exposures (table 1).

In principle, the ratio of counts in the two detectors could be cal-
culated from the Rutherford cross section if the angle were measured
precisely. But if the sample were raised 0.05 in. (1.27 mm), that is,
if the angle were increased less than 0.5 deg, the ratio of counts in
the two detectors would be reduced approximately 30 percent. Since our
test capacitors were located anywhere on a TO-5 header, that is, not
necessarily centered, we could get large variations in particle count at
the sample for a constant particle count at the monitor detector. Few

10
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Figure 1. Experimental schematic for a par-
ticle and proton exposures.

TABLE 1. RESULTS OF CALIBRATION EXPOSURES OF a PARTICLES
AND PROTONS

Sample Monitor Exposure
ibration Exposure position detector (s)

Initial, 1 911769 11032 138.2
helium ions, 2 856319 10023 90.4
1-mm aper- 3 858821 9985 49.5
ture 4 850685 10017 50.2

5 858404 10022 80.2

Sample 1 607824 9995 51.6
raised 2 606287 9988 53.7
1.27 m 3 598782 10028 51.9

4 594426 10027 51.2
5 593954 10025 52.8

Proton, 1 501689 10063 -
1-ne 2 503328 10050 -

aperture 3 497349 10051 -
4 503061 10073 -
5 510102 10074 -

things in nuclear physics are as well established as the Rutherford
cross section, but it varies so strongly with position at small angles
that we could not rely on it to determine the incident particle count at
the sample.

The method finally settled on for counting incident particles was to
use the sample as its own detector. After the sample had been exposed
at positive bias and the flatband voltage shift (AVFB) had been deter-
mined, the bias was reversed so that the sample was in depletion. The
MOS capacitor was then used like a surface barrier detector with the
depletion region in the Si being the sensitive volume. Then the expo-
sure was repeated, and the current pulses in the capacitor were counted
by a multichannel spectrum analyzer.

11



Figure 2 is a schematic diagram of a sample during the particle
counting. As an a particle passes through an MOS capacitor, it creates-
electron-hole pairs in the SiO 2 and in the Si substrate. The dashed
line represents the depth in the Si of the depletion layer. The free
charge in the depletion layer appears as a current pulse, which is
counted by the spectrum analyzer. A typical spectrum is shown in figure
3. A background measurement indicated that the low-energy counts (below
the marker) were present with the beam blocked off, but only about 1000
counts above the mark were noise.

The aluminum gate electrodes are thin enough that the energy lost by
the charged particles is almost negligible. A 2-MeV a particle passing
through 105 nm of aluminum (Al) loses slightly less than 0.04 MeV.38

For the protons, the energy lost in the gate electrode is even less,
0.005 MeV. Thus, a known number of particles of known energy were inci-
dent on the SiO2 film. The amount of charge created could then be cal-
culated very accurately. The amount of charge that escaped recombina-
tion was determined by measuring the AVFB using the well-known
capacitance-voltage (C-V) technique.3 9 Typical C-V curves are shown in
figure 4. The irradiation took place at 77 K, and the preirradiation
and postirradiation C-V traces were recorded. The average fluence of a
particles and protons on the sample was 1.6 x 108/cm2 and 1.06 x
108/cm2 , respectively. For the very thin SiO2  (135 nm), the energy
loss per unit path length was uniform across the SiO 2 for these high
energy particles. The calculated total dose in the SiO 2 was 3.8
krad (SiO2 ) from the a particles and 0.54 krad (SiO2 ) from the protons.

Figure 2. Sample schematic showing metal, SiO 2, and
depletion region of Si substrate.

12
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The total AVpB was assumed to be proportional to the average yield
of holes that escaped recombination and were immobilized in the SiO 2.

The AVFB is proportional to the first moment of the charge distribu-
tions, and in this case the holes are created and frozen in place uni-
formly across the Si 2. Under these conditions,

AV ES C xp(x) xdx: 4
ox JO ox

reduces to

I B 2 C
ox

where

Cox = oxide capacitance, ee0/lox,

= 3.85 for SiO 2,

c0 = 8.85 x 10- 14 f/CM,

lox = oxide thickness,

Q = charge, f(E)Q0 ,

f(E) = experimentally determined fractional yield of charge sur-

viving recombination,

Q0 = total amount of positive charge generated by irradiation,

1.6 x 10- 19 coulomb/hole

where

dT/dx = energy loss per unit path length,

IS eV - electron-hole pair creation energy that has been
reported 40-43

14
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The procedure was to measure the AVFB as a function of the applied
field. The fractional yield was then determined by dividing the meas-
ured AVFB(E) by the calculated maximum AVF.B, assuming no recombination.

Since one would expect the charge yield to depend on the angle
between the field and the particle beam, we performed three series of
measurements: (1) with a particles incident at 45 degi (2) with a
particles as close as possible to normal incidence, 6 deg and (3) with
protons incident at 45 deg (tables 2 to 41 fig. 5 and 6).

TABLE 2. HELIUM ION RESULTS AT 45 DEG

Change in
Applied threshold a Monitor Fractional

Shot Sample field voltage particle count yield
(.MV/cm) (V) count

1 118 1.48 0.106 499062 25100 0.087
2 159 1.11 0.069 423646 25534 0.066
3 104 0.89 0.051 363908 25025 0.058
4 153 0.37 0.031 355028 24993 0.036

5 125 0.22 0.026 339447 25108 0.031
6 160 0.15 0.028 469308 25041 0.024
7 137 0.07 0.015 393174 25000 0.016
8 129 0 0.020 410312 25041 0.014

9 112 0.37 0.033 370939 25081 0.036
10 30 0.52 0.045 349000 24822 0.055
11 130 0.74 0.047 349000 24822 0.055
12 152 2.22 0.055 182605 25049 0.113

13 135 1.85 0.098 418907 25052 0.096

TABLE 3. HELIUM ION RESULTS AT 6 DEG

Change in
Applied threshold a Monitor Fractional

Shot Sample field voltage particle count yield
(,V/cm) (V) count

1 132 1.48 0.083 735248 25074 0.065
2 146 0.74 0.051 684609 25055 0.041
3 113 0.37 0.024 589315 25034 0.024
4 161 1.11 0.057 499087 25062 0.050

5 102 1.85 0.094 498744 25126 0.077
6 96 2.22 0.102 644746 25083 0.091
7 126 2.59 0.071 520040 25072 0:095

9 101 2.96 0.114 666302 25084 0.098
9 140 0.15 0.029 574529 25033 0.020
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TABLE 4. PROTON RESULTS AT 45 DEG

Change in
Applied threshold Particle Monitor Fractional

Shot Sample field voltage count count Yield

1 20 1.48 0.035 356659 25054 0.310
2 104 0.74 0.026 389967 25079 0.211
3 138 1.11 0.037 373653 25088 0.290

4 51 0.37 0.039 742379 25059 0.147

5 16 0.15 0.016 380000 25079 0.113
6 54 2.22 0.038 289219 25069 0.374
7 142 1.85 0.039 312000 25116 0.351
8 156 2.96 0.057 342204 25077 0.465
9 44 2.59 0.043 270247 25051 0.439

0.20

0.15

S0 =45'
2 0.10 

0
X.-

0 6

6* 0

00

* 0

0 I . I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0

ELECTRIC FIELD (MV/cm)

Figure 5. Experimental results for a particles
incident at 45 and 6 deg between

field and particle track (6).
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Figure 6. Experimental results for protons inci-
dent at 45 deg.

One can see from figures
5 and 6 that the fraction of 1.0 V
charge escaping recombina- 12MeV ELECTRONS
tion is only a small frac-
tion of the total charge 0.8 -
generated by a highly ion- =
izing particle. Fr corn- 0

parison, we show in figure 7 c 0.6
the results of these experi- om
ments mlong with previously
published results for elec! 0.4 ?0 MV PROTONS
trons.3 9'4 0  Fbr high-energy .o n.

electrons, the yield is
close to 100 percent at 0.2 IPOSITIVE BIAS
fields above -2 MV/cm; but , - M.TC2 100 PARTICLES
for a particles the yield is S 'L , 'L
on the order of 10 percent 0 2 3 4 5
at 2 MV/cm, and for protons ELECTRICFIEL(MV/cm)
the yield is -25 percent at
2 MV/cm. The results in
figure 7 show dramatically Figure 7. Comparison of a particle and
the effect of recombination proton results with previously
along the track of a heavy published results for elec-
ion. trons.
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4. ANALYSIS

This section discusses the physical model that describes the experi-
mental results. In particular, we detail the Jaff6 model 2 8 as orig-
inally developed and as applied here.

Jaff6 began by assuming that the charge distribution produced by an
a particle is uniform along the z-axis, that is, along the particle
track. The initial density of free charge about the axis is assumed to
be Gaussian and given by

N o  _r2/b2

n (r,o) - e , (7)
irb2

where N0 is the total number of electron-hole pairs produced per unit
path length and b is the column radius.

Then Jaff6 treated the case in which no external field is present
and the evolution of the charge distributions is given by

n,
±=DV2n -a n_ , (8)

at+

where the first term on the right is the diffusion term and the second
term is the recombination term. Jaff6 chose to develop an approximate
solution to equation (8) by neglecting the recombination term and
solving the diffusion equation first. He obtained the standard result

+ N O0 -r2/(4Dt+b 2)

n* t i(4Dt + b2)

Then he allowed for the effect of recombination by replacing N0 with
N(t) in equation (9) and substituting equation (9) into equation (8).
The result was an expression for dN(t)/dt, which could be integrated to
obtain the result

N0
N(t) t0 +b 2  (10)

1 + L ln 4Dr
Byr D b2

or

N0  -r2/ (4Dt+b2 )

1n+ ONl n 4Dt + b2  w(4Dt + b2)

S+ -r1 b2
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Next, Jaff6 calculated the fraction of charge diffusing outside a
radius, R (comparable to the separation between columns), which was

considered to have escaped recombination at any time, t. This calcu-
lation was performed by integrating equation (11) over space and time
with the fraction of charge surviving at infinite time,

N 1 0 - d- e0 d- (12)

0 t 0 1 + - ln -
BirD

where

R2

4Dt + b
2

R
2

-4DR
2

dE dt
(4Dt + b2)

2

Since R is generally large compared with b, it is sufficient to
evaluate the integrand at the upper limit, t + -. The integrand in
equation (12) is plotted in figure 8, and the integral can be evaluated
numerically. The yield for 2-MeV a particles in SiO 2 is less than 1
part in 10P.

The zero field case corresponds to two cylinders of charge, one

positive and one negative, spreading out under the influence of diffu-
sion and undergoing recombination at the same time. Next, JaffS
considered these same cylinders in the presence of an external electric

field. The basic assumptions here are that (1) the charge densities are

sufficiently small that the electron-hole interactions are small com-
pared with interactions with the field, that is, e 2/<rij> << eEX, and

(2) screening is negligible (b < ADebye). The first of those conditions

is not really satisfied until considerable recombination has taken
place, so one would expect the theory to make reasonable predictions
only at late time.

First, Jaff6 considered the case where the field is parallel to the

column axis and the cylinders move as indicated schematically in figure

9. If field E is applied between the plates of a capacitor with sepa-
ration L, then the time for the cylinders to move past each other is

given by T - L/2vE. (2p is replaced by V. + pj if the positive and

negative charges have different mobilities.) The region where the

cylinders overlap is described by the zero field calculation stated

1.9
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Figure 8. Jaffig's calculation for rate at
which ions escape recombination
in absence of applied field
for Sio 2 (yield =1.49 x 10-4).
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above, but no further recombination takes place in the parts of the
cylinders where the positive and negative distributions no longer
overlap. The number of charges of each sign that escape from the volume
of overlap in time increment dt is 2pEN(t) dt, and the total number of
free charges that escape recombination is given by

N 2 d2EN aN t b2  (13)
0 1O + -1 In4D+

b2

Using the logarithmic integral,

li(x) = i

tabulated by Jahnke and Emde, 4 one can compute the fractional yield,
Y = N2/NoL, which can be shown to be

-- Yl-YI(Ii ey2 -li eyl)  (4
1L E _ y e e~) ,(14)

where

BwD

8D 4DT + b2
,;Nfi -- + InY2 0  b 2

Evaluating equation (14) for S10 2 leads to the results pl-tted in figure
10 for two values of L.

Second, Jaffd considered the case where the field is perpendicular
to the particle track as indicated schematically in figure 11. He
solved the following differential equation by first neglecting the
recombination term:

an ( 2n, aIn 1
at- D ax 2 * ax
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The particle track is here taken to be along the z-axis, and the field
is taken to be along the x-axis. When this equation is solved without
the recombination term, one obtains the result

N exp -(x T pEt) 2 +zy (16)
w(4Dt + b2) 4Dt + b2

where r2 has been replaced with x 2 + y2 . Equation (16) is the standard
diffusion result for two cylinders of charge spreading through diffusion
and being pulled apart as shown in figure 12. Then Jaffd substituted
equation (16) into equation (15), letting N be a function of t (only),
and obtained the result

N(t') - 11- 2 ) (17)

exp

2r 0 4Dt + b2  dt
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Figure 11. Schematic of two cylinders of charge moving under
influence of normal field and parallel field
(that is, arbitrary angle of incidence).
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Figure 12. Schematic of two cylinders of charge moving under

influence of normal field.
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If equation (17) is substituted into equation (16), one obtains the
approximate solution to equation (15). To get the yield of charge, one
has to perform the integration in equation (17) from t = 0 to t = a,

with the following result:

Y N(E) = 1 0 1 + 172() (18)

where

S(z) = ~1/2 ez/2(i.!)Ht,(I) Z (19)

b2 P2E
2

2D
2

Here, H(1 ) is the Hankel function of the first kind.

Third, Jaff4 treats the case of arbitrary angle between field and
particle based on the two special cases already considered (fig. 13).

If the angle between the field and the particle track is taken to be 8,
then the time for the cylinders to move past each other is

T' = L/2pE cos e ,

which is analogous to the parallel field case. The number of charges
escaping recombination is

N3 = 2pE cos 0 N(t) dt

as before, where E has been replaced by the relevant component,
E cos 8. The fractional yield is given by

N
Y(E) = 3

LN
0

-2pE cos T dt' (20)

L t'ep 2u2E2 sin 2 Ot2

a 0 ef 4Dt + b2  / dt

Of +2- 4Dt + b
2
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Figure 13. Experimental results for a

particles at 45 deg compared
with JaffS's approximate solu-
tion, where column radius, b,
is taken to he adj.table.

In equation (20), one can recognize equax. (17) W th field E replaced
by the normal component, E sin 0. Equa .,on (20) can be evaluated with
the result

Y(E) ,1(21)

1 + 1 S(zI)

where z' - (b2p2E2 sin 2 0)/2D2. Equation (21) is only approximately

equal to equation (20) because an end contribution has been neglected,
but Jaff4 argues that it is small in practice. For fields of practical

interest in SiO 2 (that is, high fields), one can use the asymptotic

expansion iH~l)(iz) Z e'z/(Ix/2)1/2 and get

Y(E) 1 + 1/22D (22)8irD bjjE sin 0
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The recombination coefficient a was determined by Langevin 2 6 to be

a = le/e0 ,

and equation (22) becomes

Y(E) = + (2.)1/2 Ngs 1 (23)

which is identical with equation (3). Jaff6 was able to explain his
experiments adequately with this model, treating both No and b as
adjustable parameters. 25- 2 7  However, No can be obtained independently
by using the Bethe theory 4 5' 6 or (recently) Ziegler's compilation, 38 so
a modern researcher has only one free parameter, the column radius, in
applying this model. In figure 13, we replot our experimental results
for a particles along with the Jaff6 solution for several values of b.
One can see that the agreement between the Jaff6 theory and the
experiment is qualitative at
best. The curves do not have
the same shapes, but for a KAMERSF
narrow range of E values one
could pick a value of b that
would give approximately the 0.4
correct yield.

In measuring the yield of
charge in liquified gases, Ger-
ritsen encountered similar 0.6
problems.31 '3 2  That is, the
Jaff4 model fitted his results
only roughly. Kramers, 33 a col-
league of Gerritsen, proposed a 0.4
modification of the Jaff6 treat-
ment to try to explain Gerrit-
sen's results. Kramers first AE
neglected the diffusion term in
equation (15) (or eq 2) and then 0.2
by a complicated procedure ob-
tained an analytical solution to C-3

the remaining equation. The
result is plotted in figure 14
along with the Jaffd solu- 0 .42 0.4 1O. 0.1 0.10
tion for comparison. In fig- REDUCE FELO, f
ure 14, the fractional yield
is plotted as a function Figure 14. Kramers' approximate solu-
of reduced field, f - F/Fo, tion compared with JaffA's
where F is the applied field and expression.
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F0 is a reference field. When Kramers reintroduced the effect of the
diffusion term, he was left with an arbitrary integration constant, C,
which has no physical meaning. The dashed lines in figure 14 are the
fractional yield for two selected values of this constant C. One can
see from figure 14 that the yield is rather sensitive to the value
chosen for this parameter.

This situation is extremely unsatisfying. It is one thing to esti-
mate a physical quantity such as the column radius, which is unknown but
which can, in principle, be determined independently. It is another
thing to pluck out of thin air a constant that has no meaning and that
cannot be checked, but that nevertheless is critical. Thus, we do not
use Kramers' result. But we should note in passing that even with the
diffusion "fudge factor," the Kramers' theory did not fit Gerritsen's
experiments well. In the end, Gerritsen had to assume that the column
radius took on different values at high fields and at low fields to get
reasonable agreement. This assumption is best greeted skeptically.

The value of Kramers' discussion is that he points out that, at
least at low temperatures, the recombination term in equation (15) (or
eq 2) is by far the largest term, with the drift term next and the
diffusion term smallest. But rather than neglecting a term to simplify
the analysis, one can use a large digital computer to solve the exact
equation numerically. Today, even a pedestrian researcher can perform
analysis unimaginable to either JaffS or Kramers before the age of
microelectronics.

The approach here is to use the initial Gaussian distribution postu-
lated by Jafff4 (eq 7) and to calculate the distribution of charges using
a two-dimensional finite difference code and equation (15). The results
can be generalized to three dimensions by a process similar to that used
to get from equation (18) to equation (21).

The code written for this analysis calculates the initial density of
charge at each point in a two-dimensional Cartesian grid with a maximum
of 200 x-values and 100 y-values. The particle is assumed to travel
along the z-axis, and the field is assumed to be along the x-axis.
(Since the problem is symmetric in y, it serves no purpose to grind out
the calculation in the lower half plane.) The grid spacing is variable
in principle but, for all the calculations reported here, the points
were 0.5 nm apart. Since the calculation is two dimensional, it de-
scribes only the region of overlap in figure 11, and only the normal
component of the field enters the problem. Then a procedure similar to
Jafffi's is necessary to generalize the result to arbitrary angles. That
is, one can follow the procedure leading to equation (13), except that
the integral is evaluated numerically.
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The code calculates the positive and negative charge densities from
equation (7) for each point in the grid at t = zero. Then it calculates

n (i + 1,j) + n (i - 1,j) + n (i1 j + 1)
V2 n (i~j) = t

h2

(24)n (i,j - 1) - 4n±(iij)
+±

h2

where i is the x index, j is the y index, and h is the grid spacing.
Then the code calculates an/ax at each point from the relation

an (i,j) n (i + 1,j) - n (i - 1,j)

= (25)
ax 2h

The derivatives an±/at are calculated at each point by using equation
(15). Then the charge densities are updated according to the relation

an (i,j,t)
n (i,j,t + At) = n (i,j,t) + a t At (26)

± * at

where At has to be chosen with some care to keep the problem from
becoming unstable. After the new densities have been calculated, an
integration routine adds up the surviving charge, and N(t) is printed
out. In addition, ft N(t') dt' is calculated after each cycle so that
the problem can be generalized to arbitrary angles of incidence. Then
the process is repeated by using the new densities and usually a recal-
culated time step.

This code is extremely simple in that it consists of perhaps 150
FORTRAN statements. However, it requires large amounts of memory and
processing time. The grid 200 by 100 means 20,000 grid locations and
there are eight variables (n , n_, V2n+, V2n_, an+/ax, an-/ax, an+/at,
and an_/at) calculated at each point. Thus, there are -160,000
variables calculated per cycle for several hundred cycles. On an IBM
System/370 Model 168 computer, this code requires about 1.4 Mbytes and
perhaps 10 to 15 min of run time. (Fbr a complete source listing, see
appendix A.)
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In the calculations presented here, the following constants were
used:

NO = 1.33 x 108 cm-1 for a particles and 2.97 x 107 cm"I for0I
protons,

P+ 10-5 cm2/V-s,

= 40 cm2/V-s,

a = (P+ _-)e/ce 0 = 1.88 x 10 cm3/s,

D+ = l+kT/e = 6.5 x 10- 8 cm2/s,

D- = VkT/e = 0.261 cm2/s,

b = 3.5 nm, free parameter chosen to produce agreement with
experiment.

The distribution of charges at t = 0 is shown in figure 15. In figures
16 to 21, the distributions are shown for t - 10- 15, 10- 14, 3 x 10- 14,
10- 13, and 3 x 10- 13 s for a perpendicular field of 106 V/cm. One can
see that the positive charges do not move, and most of the charge recom-
bines before the field separates the negative charges from them. For a
much smaller field, E = 104 V/cm, the distribution at t = 3 x 10- 1 3 s is
shown in figure 22. One can see that diffusion of the negative charges
is important because the distribution has spread out. The field has
moved the negative charges only slightly to the left, but the recom-
bination has eaten away both charge distributions in the region where
they still overlap. Figures 23 to 30 show the charge distributions
after they have been separated or nearly separated at different fields
for incident a particles. One can see from the figures how the yield
decreases with decreasing field.

These results are summarized in figure 31, in which the solid line
joins the calculated yield values for a particles incident at 45 deg and
the experimental points are shown for comparison. One can see that the
agreement between theory and experiment is very good if one assumes a
column radius of 3.5 nm, especially at high fields. At low fields, the
measured yield is slightly higher than calculated, however.
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This difference at low fields is probably due to the form of the
diffusion coefficient that was used. D was calculated from the relation

D _ kT (27)
1i e

where p was measured. This relation is valid only for relatively dilute
solutions. In this case, the maximum ionizaLion density at t = 0 is ex-
tremely high, between 1020 and 1021 charges/cm3 . Thus, some form of
concentration dependent diffusion modelk 7 or a hot electron model prob-
ably is appropriate. Such a model would increase the diffusion term and
the yield at low fields where diffusion is already most significant.
Crank suggests no less than 10 examples of concentration dependent
models that one might choose. There is no physical reason for pre-
ferring one of them over another, but they all would produce a cor-
rection in the right direction here.

In figure 32, the results of the calculation are compared with the
measurements for a particles incident at 6 deg. In the exposures at 6
deg, the normal component of the field is only about 1/10 of the paral-
lel component. For this reason, the cylinders move apart more slowly
than they move past each other, and there is a high recombination rate
for a relatively long time, at least where the charge distributions
still overlap. In this case, the effects at the end of the column of
charge have to be specifically accounted for because most of the posi-
tive charge that escapes recombination is near the Si-SiO 2 interface.

N(t) for a total field of 0.94 MV/cm is plotted on a log t scale
(fig. 33) and on a linear t scale (fig. 34). The time scale can be
converted to a position scale if one multiplies by lEparallel. The
charge near the Si-SiO2 interface contributes more to the observed
threshold voltage shift. This effect can easily be accounted for, and
the experimental results in figure 32 have been corrected accordingly.
Even so, one can see that the measured yield is still higher than the
calculated yield. The probable explanation is that some form of concen-
tration dependent diffusion is again appropriate.

The results of the proton calculation are compared with the results
of the experiment in figure 35 for an assumed column radius of 3.5 rm.
Once again, the agreement is reasonably good. The results of all the
calculations are summarized in table 5, in which T - (L/cos 8 )/pE and
the yield is (1/NoT)fT N(t) dt.
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Figure 15. Initial (time = 0) distribution of both

positive and negative charges in finite
difference solution to "exact" Jaff4
equation for perpendicular field = 106

V/cm.
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Figure 16. Positive and negative charge densities at
time = 10- 16 s in finite difference calcu-
lation for perpendicular field = 106 V/cm.
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Figure 17. Positive and negative charge densities at

time = 10- 15 s in finite difference calcu-
lation for perpendicular field = 106 V/cm.
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Figure 18. Positive and negative charge densities at
time = 10- 15 s in finite difference calcu-
lation for perpendicular field = 106 V/cm
(fig. 17 replotted on expanded scale).
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Figure 19. Positive and negative charge densities at

time = 10-14 s in finite difference calcu-
lation for perpendicular field 106 v/cm.
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Figure 20. Positive and negative charge densities at
time - 3 x 10-14 s for perpendicular field

1 06 V/cm in f inite difference calcula-
tion.
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Figure 21. Positive and negative charge densities at
time = 10- 13 s for perpendicular field106
106 V/cm in finite difference calculation.

1

5 -I

J4
43

=!
2

0.
-50 -40 -30 -20 -10 0 10 20 20 40 so

ISTANCE 1nm)

Figure 22. Positive and negative charge densities at
time = 3 x 10- 13 a for perpendicular field
M 104 V/cm in finite difference calcula-
tion (shows importance of diffusion at
low fields).
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Figure 23. Positive and negative charge densities at
time = 10-13 s for perpendicular field =
10 5 V/cm.
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Figure 24. Positive and negative charge distributions
at time - 10-13 s for perpendicular field
-2 x 105 V/cm.
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Figure 25. Positive and negative charge densities at
time 10- 13 s for perpendicular field = 3
x 10 5 V/cm.
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Figure 26. Positive and negative charge distributions
at time = 10-13 s for perpendicular field
= 5 x 105 V/cm.
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Figure 27. Positive and negative charge distributions
at time = 10- 13 s for perpendicular field
= 7 x 105 V/cm.
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Figure 28. Positive and negative charge distributions
at time = 3 x 10-14 s for perpendicular
field - 1.5 x 106 V/cm.
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Figure 29. Positive and negative charge distributions

at time = 3 x 10-14 s for perpendicular
field = 2 x 106 V/cm.
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Figure 30. Positive and negative charge distributions
at time = 3 x i0-14 s for perpendicular
field = 3 x 106 V/cm.
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Figure 31. Experimental results for a
particles at 45 deg (dots)
repeated along with results of

finite difference calculation
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Figure 32. Experimental results for ot
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finite difference calculation
(solid line). 39I
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Figure 33. Fraction of charge surviving at time t for
perpendicular field =105 V/cm.
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Figure 34. Fraction of charge survivin I at time t
for perpendicular field - 10 V/cm (fig.
33 replotted on linear scale).
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Figure 35. 0U

Comparison of proton experi-
mental results with results of 0.25
finite difference calculation
for column radius, b, = 3 and
3.5 nm. 0.20

0.15

0.10 .

0.05
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TABLE 5. SUMMARY OF FEMITE OIFEREMCE CALCULATION RESULTS

Normal Total Time T Fractional

Unit field field (8) N(t) dt yield

(MV/cm) (MV/cm)

a particle, 0.1 0.14 4.73 x 10-
12  

9.17 x 10
6  

0.0146

45 deg 0.2 0.28 2.36 x 10
- 1 2  

7.71 x 10
-
6 0.0246

0.3 0.42 1.58 x 10
-
12 7.01 x 10

-
6 0.0334

0.5 0.71 9.45 x 10-13 6.14 - 10
- 6  

0.0489

0.7 0.99 6.75 x 10
- 1 3  

5.59 x 10
- 6  

0.0623

1.0 1.41 4.73 x 10
"
13 5.06 x 10

- 6  
0.0804

1.5 2.12 3.15 x 10-
13  

4.42 x 10
- 6  

0.1055

2.0 2.83 2.36 x 10
"
13 4.01 x 10

- 6  
0.1278

3.0 4.24 1.58 x 10
" 13  

3.49 x 10
- 6  

0.1661

a particle, 0.1 0.94 3.59 x 10
-
13 0.996 x 10

- 6  
0.0208

6 deg 0.2 1.89 1.79 x 10
- 13  

0.822 x 10
- 6  

0.0345

0.3 2.83 1.19 x 10
- 13  

0.729 x 10
- 6  

0.0461

Proton, 0.1 0.14 4.73 x 10-12 6.43 x 10
- 6  

0.0458

45 deg 0.2 0.28 2.36 x 10-12 5.21 x 10
- 6  

0.0743
0.3 0.42 1.58 x 10

-
12 4.60 x 10

- 6  
0.0981

0.5 0.71 9.45 x t0
- 13  

3.8? x 10
"
6 0.1378

0.7 0.99 6.75 x 10-
13  

3.42 x 10
-
6 0.1707

1.0 1.41 4.73 x 10-
13  

2.98 x 10
- 6  

0.2125

1.5 2.12 3.15 a 10
" 13  

2.50 x 10
-
6 0.2677

2.0 2.83 2.36 x 10-
13  

2.19 x 10
-
6 0.3130

3.0 4.24 1.58 x 10
" 13  

1.80 - 10
"
6 0.3830
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5. DISCUSSION

This work shows that the Jaffd model can be used to calculate the
ionization of SiO2 by heavy charged particles. The Jaff4 model has two
"free" parameters, No and b, but No can be determined independently.
This work, in effect, fixes b for a particles and protons in SiO 2 at
-3.5 nm. In figure 35, the proton experimental data are plotted along
with the calculations for b - 3 and 3.5 nm to give an idea of the sensi-
tivity of the calculation to variation in b. Similarly, in figure 36,
the 45-deg a particle data are replotted along with calculated yield
curves for b = 3 and 4 nm as well as b - 3.5 n. One can see that the b
= 3.5 1 0.5 nm is a reasonable estimate of the error in the measurement
of b.

One reasonably might ask why b should be in the range of 3 to 4 n;
a significant body of literature bears on the ques _ion. When a charged
particle passes through a medium, the dominant energy loss mechanism
is the production of plasmons, which subsequently decay to electron-
hole pairs.4 8 "4 9  Fbr SiO 2, the plasmon energy is approximately

0.12

O'S.

0.10

U.N

002

0

1 0.5 1.0 1.5 2.0 2.5

ELECTUM FILD (WV/CM)

Figure 36. Comparison of a particle ex-
periments with calculations
for column radius, b, - 3,
3.5, and 4 nm (indicates how
sensitive results are to vari-
ation in b).
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22 eV (N = 4une 2/m), and the electron-hole pair energy is approximately
18 eV.4 0 This 4 eV, which is lost in thermalization, apparently is lost
through the emission of optical phonons having an energy on the order of
0.1 eV.5 0 -5 3 The mean free path for phonon emission by hot electrons is
on the order of 0.1 nm.54  In other words, the total path length is on
the order of 4 nm (40 events that are 0.1 nm apart). But since the
electron-hole pair is on a random walk, the effective thermalization
radius is on the order of r4/ times 0.1 nm or perhaps 0.6 nm, clearly
less than 3.5 nm. However, if one takes the uncertainty in the thermal
energy of the charges to be on the order of kT, one can calculate(,&p)2/2m - kT or Ap - 4 x 10- 2 1 g-cm/s. Then from the uncertainty
principle, ApAx > h or Ax > 2.4 nm. Of course, the uncertainty

principle gives only an order of magnitude estimate, so one should
probably conclude from the argument only that b will fall somewhere
about 10-6 or 10- 7 cm. Certainly, the experimentally determined value b
=3.5 nm is within this range.

Similarly, one can estimate the spatial extent of a plasmon. A
plasmon is basically a k = 0 excitation, except that the quantum
mechanical uncertainty is kin = 4wne2 = me(22 eV).5 5  One can then
calculate Axmin - 3 x 10- 8 cm or roughly an order of magnitude less than
the extent of the electron wave function. Thus, the extent of the
cylinders of charge seems to be determined by the extent of the electron
wave functions. In other words, the radius of the cylinders is zero
except that, quantum mechanically, nothing is zero to arbitrary
accuracy.

Actually, it is somewhat surprising that the analysis based on equa-
tion (15) works out as well as it does since the problem should really
be treated quantum mechanically. Equation (15) is descended directly
from the Boltzmann transport equation, which is usually described as

semiclassical and which assumes, for example, that the duration of the
collisions is small compared with the mean free time between colli-
sions. If the field is taken to be 106 V/cm, then the drift velocity
saturates at -2 x 107 cm/s. If the mean free path is taken to be 0.1 nm
again, then the mean free time is on the order of 10-16 s. It is
difficult to see how the scattering time could be negligibly small
compared with 10- 16 s.

In addition, thermalization is assumed to be instantaneous, but the
actual thermalization time is probably on the order of 10- 13 s. For
times less than the thermalization time (that is, for hot electrons), D
is probably larger than the value given below, and U is somewhat smaller
because of carrier-to-carrier collisions.

In addition, plasma effects such as the shielding of external fields
are neglected, although at very high densities (_1020 cm-3) these
effects should be significant.
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In spite of these shortcomings, the theory seems to work reasonably
well at predicting the yield of charge in the limit as t becomes
large. The main reason seems to be that the recombination proceeds very
rapidly at early times. Most of the charge has already recombined
before the electrons thermalize and before the external field has had
much effect. The screening effects become less significant as the den-
sity decreases (that is, the assumptions of the theory become better
very rapidly as time increases). One should also note that the final
yield does not depend on the precise value of U since both D and a are
assumed proportional to j.

The classical theory used here consistently underestimates the yield
when the normal component of the field is small, both in the 45-deg
experiments and at 6 deg and for both a particles and protons. A more
complete theoretical treatment with a larger effective D to account for
hot electron effects would probably improve the agreement with experi-
ment.

A certain amount of work has been done to develop a full quantum
mechanical treatment of transport in semiconductors 5 6-58 and in dielec-
trics.5 1'5 9'6 0  However, the semiclassical model that we use here is
empirically effective in explaining the experimental results, even
though we are straining the assumptions on which the model rests. It is
interesting how often a theoretically shaky semiclassical model gives
physically reasonable results to quantum mechanical problems--the
Rutherford scattering cross section for electrons and the Bohr atomic
theory are two other examples.

The experiments and the analysis described above establish that the
Jaff6 model works reasonably well for a particles and protons. One can
easily use the model to calculate the ionization of SiO 2 by other parti-
cles or at other energies since these factors enter the calculation only
through N0 , the number of electron-hole pairs per unit path length. In
table 6, we present calculated results for the cosmic ray nuclei 12C and
5 6 Fe along with our typical a particle and proton results. The energies
chosen for 12C and 56Fe correspond to the maximum ionization for those
particles, and the a particle and proton energies are chosen to match
our experimental conditions. One can see from table 6 that the initial
ionization density for 56Fe is roughly 25 times greater than for an a
particle. But the amount of charge that escapes recombination is only
about twice as great for 5 6pe. The reason is that the recombination
term, -an+n_, is roughly 600 times greater for 5 6 Fe at first, and the
extra free charge is eliminated rapidly.
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TABLE 6. CALCULATED RESULTS FOR PROTONS, a PARTICLES, 
1 2

C, AND 
5 6

F*

Particle Energy loss, Electron Fractional yield Yield
Particle energy, 1 dE/dx hole (field - 1.4 MV/cm) (holes/cm)

(MeV) (MeV/g/cm
2
) (pairs/cm)

1H 0.7 243 2.97 x 107 0.2120 6.,30 - 106

4He 2.0 1,088 1.33 x 108 0.0885 1.18 x 107

12C 4.0 5,270 6.44 x 108 0.0242 1.56 x 107

56F 100 30,680 3.75 x 109 0.0060 2.25 x 107

6. IMPLICATIONS FOR MICROELECTRONIC DEVICES

The possibility of permanent failures of electronic devices from
single particles is a timely question in view of the current interest in
temporary upsets. -5  One might reasonably ask how small the devices
would have to be before permanent errors would be observed. Recently,
Srour et a16 1 considered the possibility that a single neutron might
cause enough displacement damage to ruin a submicrometer device. In
addition, Oldham and McGarrity6 2 have presented a worst case calculation
indicating that a single a particle might cause enough ionization to
cause a device to fail.

This worst case analysis rests on the assumptions that (1) recombin-
ation can be neglected and (2) all the charge reaching the interface is
trapped there. The assumption of 100-percent trapping is reasonable in
some cases, 6 3 but the assumption of 100-percent yield is clearly
unjustified in view of the experimental results presented above. For
100-percent yield, the device discussed by Dennard et a164 in their
well-known scaling law paper (1 x I um with 35-nm-thick Si0 2 ) would
exhibit a threshold voltage shift (AVT) of about 100 mV after being
struck by a 2-MeV a particle. However, if recombination were taken into
account, the yield would be only 6 to 10 percent in the field range of
I to 2 MV/cm, and AVT would be only about 6 to 10 mV. Many present day
circuits fail when AVT = 100 mV, but they can withstand AVT = 10 mV.

One can calculate AVT as a function of device dimensions starting
from equation (6). If the total charge produced by an ionizing par-
ticle is given by equation (6), then the charge escaping recombination
is Q = f(E)Q 0 , as before, and the charge trapped at the interface is
fTf(E)Q0, where fT is the fraction of holes that reach the Si-SiO2
interface and are trapped there. Then

A VT - 3.65 x 10-8 Z2- (28)
Cox A eV
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where A is the active area of the device. If we assume a 2-MeV a
particle with f(E) = 10 percent (that is, E = 2 MV/cm) and fT = 100
percent, we can plot equation (28) for devices of different areas as a
function of SiO 2 thickness with the results shown in figure 37. The
results in this plot do not include short channel radiation effects,6 5

which are poorly understood but which may be important. In considering
figure 37, one should remember that voltages are scaled down somewhat as
devices are reduced in size. For this reason, tolerable AVT also will

tend to shrink in the future. On the other hand, we have assumed fT =
100 percent, which is realistic only for unhardened commercial SiO2. For
hardened Si02 , the trapping fraction can be reduced by a factor of 10 or
perhaps more, and AVT can be reduced by the same factor.

Actually, the calculation of AVT in figure 37 is misleading because
we are dividing total trapped charge by total capacitance. In effect,
we are assuming that the charge will be trapped uniformly across the
active area of the device, but one would really expect a nonuniform
spatial distribution of charge as indicated schematically in figure 38.

16 21 IA

coa

10-3

STHXWIS(m)
Figure 37. Calculated threshold voltage

shift for various small area
devices as function of SiO 2

thickness. (This calculation
assumes 2-MeV a particle inci-
dent at 45 deg and 10-percent
yield; that is, applied field
2 MV/cmo For lower fields or
for other particles [protons] or
other energies, threshold volt-
age shift is smaller than shown
here.)
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'Au I

Figure 38. Schematic of MOSFET struck by a
particle.

One can do a fairly simple "particle pushing" calculation to esti-
mate the spatial distribution of the charges as they arrive at the
interface. We distribute randomly the correct number of positive
charges in approximately the correct volume and calculate the coulomb
repulsion between each pair of charges. Then following the hole
transport model of McLean, 3 7 we let each hole hop I nm parallel to the
total field that it sees. Then we stop the particles, recalculate the
fields, and let the charges hop again. This process is continued until
all the charges are trapped at the interface. The charges generated
near the interface reach it first and are trapped near the exit point of
the ionizing particle from the SiO2. As these charges build up, they

generate a field that tends to cancel the applied field. Charges
arriving later have to spread from the particle track until they are
outside the central space charge region, and only then do they move to
the interface under the influence of the applied bias.

This process is indicated schematically in figure 39 for an
obliquely incident particle. The innermost zone "fills up" first and,
as time passes, the remaining zones fill up one at a time in order of
increasing distance from where the particle hit, r.

Figure 40 shows the results for an a particle normally incident
on SiO2 100 nm thick, where the applied field is 106 V/cm and recom-
bination is neglecte. Even though the density at r < 10 nm is very
high, the total charge in the first zone is only 53 holes in this
example. These 53 holes represent a density greater than 1013

charges/cm2 , corresponding to an immense field. These holes were
created very near the interface, and the field that they generate
prevents any more charges from transporting into the r < 10 nm zone.
Charges arriving later at the interface have to move out to large r
before the applied field can drive them to the interface.
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Figure 39. Qualitative illustration of path followed
by holes hopping to interface in particle
pushing calculation.

2.0

j.5

cj 0.5

0-
0 20 40 0 0 100 120 140 6 IN 200

DISTANCE FROM WHERE PARTICLE STRIKES SI-S3I, INTERFACE (nm)

Figure 40. Charge density at interface,
assuming normally incident
2-MeV a particle, 100-nm-
thick SiO 2, applied field =
106 V/cm, and 100-percent
yield. (Dashed line shows
average [mean] charge dens-
ity.)
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The charge distribution that results from a calculation of this kind
depends greatly on the yield. In figures 41 and 42, results are given
for Lox = 20 nm, where the field is 106 V/cm. The a particle is
incident above the origin and exits at x = 20 nm and y = 0. The figures
are what one would see looking down from above on the interface, where
each dot represents a trapped hole. In figure 41 the yield is 100
percent, but in figure 42 it is only 10 percent. The maximum density is
much greater for the higher yield, and the size of the "footprint" also
is much greater.

A more realistic case for electronic devices today and in the near

future is shown in figure 43. The splatter pattern in figure 43 is for
an a particle incident at 45 deg on 50-nm SiO2 , where E = 10 6 V/cm and
the yield is assumed to be 10 percent. As before, the particle is
incident above the origin, and the exit point is x = 50 nm and y = 0.
One can see that the footprint is on the order of 100 nm in diameter,
which is much less than the size of a 1-pm device or even a 0.5-jim
device. If one imagines this charge distribution placed in a 0.5-jim
channel, one can calculate a local flatband voltage shift from the local
charge density. There would be a large local shift, but most of the
channel would not be affected at all. This result is illustrated in
figure 44.

100

-50

-100• "' "-1501,

Figure 41. Charge density at interface, assuming

d 106 V/cm and 100-percent
•(ach dot represents one

ii. Oat deg sruc,-pplie

trapped hole. Figure shows distri-

bution of holes that one would see
looking down from above Si-SiO2
interface.)
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Figure 42. Charge density at interface, assuming
that 2-MeV a particle struck 20-nm-
thick SiO 2 at 45 deg with applied
field = V/cm and 10-percent
yield. (Each dot represents one
trapped hole. Figure shows how spot
size depends on yield.)
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Figure 44. Local flatband voltage shift caused
by placing charge distribution in
figure 43 in middle of device with

0.5-pm channel length.

Thus, it seems unlikely that a single charged particle will cause a

threshold voltage shift large enough to cause a total dose failure in a
device, at least until devices are scaled down well below 1 pm. How-

ever, the small charge blobs such as in figure 43 could cause unforeseen
reliability or stability problems such as punch through or increased hot
electron injection. One should remember that highly integrated circuits
are increasingly difficult to design and build even in the absence of
radiation. Adding a few unexpected blobs of charge to these circuits is

a little bit like throwing a handful of sand into a jet engine. The
effects are difficult to predict, but they cannot possibly be benefi-
cial.

7, SUMMARY AND CONCLUSIONS

We have measured the recombination of charge produced in SiO 2 by two

kinds of heavy charged particles, a particles and protons. The fraction

of charge that escapes recombination is relatively small at fields on
the order of I to 2 MV/cm. The yield for a particles is 10 percent or
less, and the yield for protons is 25 percent or less. On the other

hand, for relativistic electrons the yield is 90 percent or more at
these fields.
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The results of these experiments are explained reasonably well by
the Jaff columnar recombination model when a column radius of 3.5 nm is
assumed. The JaffA model is well known, but the column radius
for Si02 had not previously been determined. Since the column radius is
presumably a property of the material, the JaffA model can now be used
to calculate the yield of charge for other particles and other energies.

Finally, the implications of the charge yield measurements for the
operation of microelectronic devices are considered. The charge that is
produced by an a particle and escapes recombination is unlikely to cause
a total dose failure in a device until the devices are much smaller than
1 pm. However, the circuits are complicated enough that the charge from
a single a particle could make it more difficult to solve some relia-
bility problems.
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APPENDIX A

The FORTRAN listing of the finite difference code is given below.

Subroutine INIT initializes certain variables, subroutine INT integrates
the total charge and updates the yield integral, subroutine LAPLAC cal-
culates the Laplacian operator, subroutine DNDX calculates the deriva-
tives an/ax, subroutine DNDT calculates the derivatives an/at, subroutine
NTKPI calculates the new charge densities for the next cycle, and sub-

routine OUTPUT writes the results. The main program supervises the sub-
routines.

IMPLICIT REAL*8 (A-HO-Z)
COMMON X(, :1,v Y(101) t RHON(201,101), RH3P(201,101)
COMMON D2RhON(2O,1UL)t DZRHOP(21910t119 DOXRMN(20,1901)
COMMON DDXRmP(2019101), DNNDT(2Cq1,G1), DNPOT1201,101),TPRINT(IO)
COMMON E,9,"NDPALPHARHOLUNUPtOTN,TOTPDELT0DELT9 TRATIO
COMMON TtDELXQELYYIELDNPINTIPRINTK
COMMON NXMAXtNYMAXNTMAXtNMAXtNXMXM1,NYMXMIJMINJMAXIFLAG
CALL INIT
CALL INT
CALL OUTPUT
DO 200 K=1,NTMAX
CALL LAPLAC
CALL DNDX
CALL DNDT
CALL NTKPI
CALL INT
CALL UT PUT
T=TeOELT
OELT=TRATIO*OELT
IF (IFLAG.GT.NPRINT) GO TO 201

200 CONTINUE
201 STOP

END
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SUBROUTINE~ I'd!?
IMPLICIT REAL*8 (A-HqO-Z)
COMMON X(201)9 Y(101) , RHON(201,101), RIOP(2O19101)
COMMON DZRIION(201,101), 02RH0P(201,1O1)t DDXRHN(2C19101)
COMMON ti0XRUP(2Cl11), DNNOT(2019101), DNPDT(2019101),TPRINT(I03
COMMON EBDNOPALPHA ,RHOL,UN,UPTOTNTOTPDELTODELT, TRATIO
COMM4ON TOELXDELYYIELD,NPRINT,IPRINTK
COMMON NXMAXNYMAXNTMAXNMAXNXMXMINYMXM1,JMXN.JMAXIFLAG
READ 15,100) E,5,ONDPALPI4ARMOL9UNvUP
READ 45,100) DEL9,OELYgDELTOTRATIO
READ (5,101) NX,AX,NYMAXNTMAXtNPRIfJTJMIN,JM4AX
READ (5,100) (TPRINT(l),I=1,NPRINT)

100 FORMAT (3010.3)
101 FORMAT lullO)

WRITE (6,102)
102 FORMAT 1181)

WRITE (6,103) Ev,0NDNP,UNUPALPHARIOL
103 FORMAT (I E=0901O.3,SX, 82 ,qDO.3,5X,v DN= 0010.395W, DP-0

X 010.3,5X,' UN= ,010.395X,' UP= 09DI0.3,5X9//gl ALPHA= *9010.39
X 5X,9 RIOL= 9,D1O.3)
WRITE (8,104) DELX#DELY9OELT09TRATIO

104. FORMAT 0 OELXS',D1O.3,SXO OELY- '9010;3,5XPI 0ELTO= ',D10.3,5Xt
X I TRATIO=9*010.3)
WRITE (6,105) NXMAXNYMAXtNTMAXNPRINT,JMIN,JMAX

105 FORMAT (6 NXMAX2 *916,6Xt* NYMAX= ,16,6Ks NTMAX:', 16,6X,
X I NPRINTn l*16t6Xv9 JMXNZ 9,1696X9 $JMAX= ',16)
WRITE (69106) ITPRINT( !),1=1,NPRINT)

106 FORMAT 0' TPRINT= ,9101010.3,2X)l
NMAXxZ.NXMAX-1
DO 200 I=1,NMAX
XII )=(I-NXMAX)*DELX

200 CONTINUE
Y(1)z 0.00
DO 203 J=2,NYMAX
YIJ)= (J-1)*DELY

203 CONTINUE
00 201 J=1,NYMAX
0O 201 I:1,NMAX
RSQ=-(X(lI **2.Y(J)**2)/B**2
IF (RSO.LT.-1CO.OO) GO T0 204
RHON(IJ): (RIOL/(3.14159*B*B))*DEXP(-(X(I)**2.Y(j)**2)/B**2)
RHOP(IJ3=RHONI,J)
GO TO 2C5

204 RHONC19IJ).00
RHOPI Itj)=0.DO

205 02RmON(I,J)m0.0
D2R'IOP(IJ)m0.0
DDXRMN( 1,J)0.O
DDXRHPI IJRC.O0

201 CONTINUE
I FLAGwO
IPRINT*O
TuO.DO
DELTuDELTO
YIELD £0.0

RETURN
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SUBROUTINE LAPLAC 
APNI

IMPLICIT REAL*$ (A-HO-Zl
COMMON X(20119 Y(11 9 RHON1201,101), RIIOP(2O19l01)

COMMON 02.R$ON1201910119 f2RHDP(201,IO1), DDXRHN120I111I
COMMION DDXRHP(201#11), DNNOT12O1#1Ol), ONPOT(ZO1tll),rPRItJT(I0)
COMMON EBPONDPALPHARHOLUNU~,TOTN,7TT90ELT0,DELT# TRATIO
COMMON TDELXDELYPYIELONPRXNTIPRINT,K

COMMON NXMAXNYMAXNTMAXNMAXNXMXMJNYMXMI ,JMINJMAX.IFLAG

D2RHOPI1,1)a (RHi12t,I)*RHOPI1 92)-2*RHOPI1,l))/DELX**Z
DO ZOO J=2NYMXMl
D2RHONE 1,J)=fRrONI2,J)+RHON(l ,J-l).RHlON(1,PJ+l1-3*RI1ON(lJ))/
X OELX**2

X DELX**Z
ZOO CONTINUE

D2RHON(INYMAX)E(RON(2NYMAX)RON(iNYMXM)-Z*RH)N(1,NYVMAXK)/
X DELX**2
02RMOPIINYMAX)=(RHOP(2NY4AX).RHOP(1,NYMXM1)-2*RmbOP(1,NYMAXfl/

X DELX**2
DO 201 1=2 ,NXMXMI

X DELX**2
D2RHOP(J,1J=(RAIOP(I+l13.)RHOP(I-l ,1)+2*RI40P(1,2)-4*R,40P(I9I) 3/
X DELX**2
02RH3N(1,NYMlAX)=(RHON(1.INYMAK1+RH4ON(I-LNYMAX).RMi0N(1,NYMXMI)-
X 3'RH0P(1,NYMAX) J/3ELX**2
D2RHOP(IINYMAX)-(RHJP(I+lNYMAX3.RHOPII-1,NYMAX).RHOP(INYMXM1)-

X 3*RH0N(I,NYMAX3 J/OELX**2
201 CONTINUE

DO 202 J=2,NYMXM1
DO 202 1=2,NXMXM1
OZRHON(IIJ=(RH!JNI-1,J).RHOt4(I1,J)*RMON(I,J+1)eRHONIIJ-l)-
X 4*RP4ON(IJ3)/DELX**2
D2RHOP(IJ3(RHOP(I-1J)Rv4OP(14IJ4ROPJ,)aIHOP(IJ-1)-
X 4*Rt)Pl(1J13/DELX**2

202 CONTINUE
DRHiON( NMAX1 Uj=(RHON(NKMKMIqtI.RHONf NMAX,21-2*RHON( NMAX,I))/
X DELX**2
D2RIIOP( N'qAX,'1)=(RiOPINX41XrlI3RH)P( NMAX,Z2)-2*R'EOP(NMAXt I))/

X DELX**Z
D2RH1ON( NMAXNYMAX3=(R4ON(NXMKM1,#NYMAX)+RHON( NMAKNYMXM1)-2SRHON

K I NMAXNYMAXJ)/DELX**2
D2RIIOP( N?AXNYMAXK)(RHOP(NXMM1NYMAX.RMIOPI NMAX9NYtMXMI)-2*RtOP

X ( Nt4AXtNYMAX33/OELX**2
DO 203 J=2,NYMXMI
D2RHnN( NMAX*J)= (RH0NfNxMXMlqjl+R40N( NMAXtJ-1).RMONI NMAXJ+1)-
X 3*RII"N( NMAEJl3/DELX**2
D2RHOP( NMAX#JJU (RHOPINXMXMI,J3.RmOP( Nr4AXtJ-11*RHOP( NMAXoJ+I)-
K 3*RHOP(NMAX, Jli/DELX*02

203 CONTINUE

RETURN
END
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SUBROUTINE DNOX
IMPLICIT REAL*6 (A-H,O-Z)
COMMON X(201)9 Y(1O1) 9 RHONI2O1,101)t RI4OP(20191O11
COMMON 02R1ION(201,10I), 02qHJP(2i01I, DDXR'4N(2CJ,9101)
COMMO3N DDX'HP(ZO1*101)9 DNNDT12,0191O!iv ONPOT42019I01),TPRINT(10)
COMMON E,8,DNDPALPHAPOIZLUNUP, TOTNTOTPDELTODELT, TRATIO
COMMON TOELXOELYYIELDNPINTIP~IN~iK
COMMON NX:4AX,NYNAX,NTMAX,NMAXNAMX,4,NYMXM1,JMINJMAXIFLAG
DO 200 J=1,NYMAX
DDXRH~N(1 vJ)=(RHON(2,J)-RH0N(1vJ))/OELX
DDXRHP(l tJ)=(RttOPI29J)-RHOP(IPJ)l/DELX
ODXRHN( NMAXtJ)=R.MN( NMAXJ)-lHSN(NX4XMIJ))/DELX
DDXRI4Pf NJ4AXtJ)=(RHiUPf NMAXvJ)-R'40P(NXi4XM~tJJJ/DELX

200 CONTINUE
DO 202 J=1,NYMAX
DO 201 Iz2,NXMXMI
DOXRHNI I J)=(RIION(II,1J)-RHON(I-1,J))/(Z*DELX)

201 CONTINUE
202 CONTINUE

RETURN
END

SUBROUTINE ONOT
IMPLICIT REAL*8 (A-H4,O-Z)
COMMON X(201), Y4131) , RmON(201,101)9 RHOP(201il01J
COMMON 02R'ION(20Iv1O1), OZRNOP(ZO1,101), D9XRHN(201,10l)
COMMON D0XRUIP(ZO1,1u1), rNNDT(201,101)% DNPOT(2019101),TPRINT(10)
COMMON E ,BDNDP,ALPHA ,RHOL,UN,UP ,TOTN4,TOTP ,OELTO,DELT, TRATIO
COMMON T,[CELXDELYYIELD,NPRINT,IPRIN1,K
COMMON NXMAX,NYMAXNTMAX,NMAX,NXMXM1,PNYMXMIJMINJMAXIFLAG
DO 201 J=1,NYMAX
DO 200 1=1NAX
DNNOT(IJI='N*D2RH4ONIj),UN*E*ODXRHN(I,J)-ALPHA*RHON(I,J3*
X RI4OPII#J)
DNPDT(I,. q=OP*O2RHOP(IJ)UP*E*DDXRH41J)-ALP4A*RHjON(IJ)*

X RHOP(IJJ
200 CONTINUE
201 CONTINUE

RE TUR.N
END

62

Llq.



APPENDIX A

SUBROUTINE NTi(Pl
IMPLICIT REAL*8 IA-H,O-Z)
COMMON X42011i Y1101) 9 RHON(2019101I, RHOP(201,10l)
COMMON D2RHON1201,101)i 02R'IOPI2O1,1O1)t DI3XRHN(201,IQI)
COMMON DDXktP(2C1O), DNNOT(201,1l0I)t DNPDT(2O19101)tTPRINT(I
COMMON E,bON,OPALPnA,RHUL,UNUPTOTN,TorpDELT0,OELT9 TRATIO
COMMON TicELX,DELYtYIELDNPRINTtlIPRINTI(
COMMON NXMAXtNYMAXNTMAXNMAXNXMXMI1,NYMXM1,JMINJMAXtIFLAG
0O 201 jzlNYMAX
DO 200 Iz1, NMAX
RHON(I J)=qHON(I ,J)*ONNDT IIJ)*DELT

* RI4OPE IJ)=RhUP(1,J)*DNPOTIXJ D*DELT
200 CONT INUE
201 CONTINUE

RETURN
END

SUBROUTINE INT
IMPLICIT REAL*6 (A-ttO-Zl
COMMON X(201), Y1101) 9 RHON(2CI111, RtHOD(20I,101)
COMMON 02RHON(201,1O1), O2RHOPI2O1,101), ODXRHN42OL1O11)
COMMON OOXRHP(ZOI,1011, ONNOT(201,1011, 0%P0Tt201,1O1)vlPR1NTf10)
COMMON E,8,DNDP ,ALPHARHOL ,UNtUP TOTNTOTPDELT0,DELT, TRATIO
COMMON TOELX.DE-LYYIELDNPRINTIPRINTK

COMMON NXMiAXNYMAKNTMAKNMAXNXMXM41,NYMXM1 ,JMIN,JMAX9IFLAG

TOTN=O.O
00 200 1=1,NMAX
TOTN= RHON( 1,1 J*EELX*DELY.TOTN
T3TP= RHOP It, )*DELX*DELYTDTP

200 CONTINUE
03 201 J=29NYMAX
00 201 I1,1NMAX
7OTN=*RHwONI I J)*DELX*DELYTOTN
TOTP=*RHOfP( I j)*DELX*OELYe+TOTP

201 CONTINUE
YIELD=YIELD+TOTP*DELT
RETURN
END
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SUBROUTINE OUTPUT
IMPLICIT REAL*8 IA-siO-Z)
COMMON X(201)9 Y(101) , RHONIZO1,101)9 RIOP(20191O1)
COMMON O2Ri1ONIZO19101), 02R4IOPf2OIrl0I)q 0!XRMNI2019101)
COMMON DOXRHP(201,lOl)t DNNDTI2C1,1OI)v ONPOT(201,101),TPRINT(I0)
COMMON EB,DNDPALPHARHOLUNtUPTOTNTOTPOELTOOELT, TRATIO
COMMON TDELXOELYYIEL~oNPRINTIPRINT,K
COMMON NXMAXNY'4AXNTMAXNMAXNXMXMINY'4XM1,JMINJMAXIFLAG
WRITE 46,101) K,T,TOTN,TflTP,YIELD

101 FORMAT It CYCLE NO= *l15, 7= 19010.395Xtl TOTNw 09O10.39
X 5X#9 TOTP= 10O1O.395W, YIELD= 19D1O.3)
IF (T.GE*TPRINT(IFLAG)) IPRINT=l

IF(RMAT E. GO TO 201 :OO.,X

202 RTO 20

641 5RT 612

102 FORAT e.,l0023i1NA
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GOSSWINSTR. 14 ATTN WINOKUR, P. S., 22300
8000 MUNICH 60 ATTN BRANDT, H. E., 22300
FEDERAL REPUBLIC OF GERMANY ATTN MEYER, 0. L., 22800

ATTN GILBERT, R. M., 22300
JACQUES A. BERRY ATTN TRIMMER P., 22100
ONERA/CERT ATTN VAULT, W., 22100
2 AV. ED BELIN ATTN EISEN, H., 22800
31055 TOULOUSE ATTN WILKIN, N., 22800
FRANCE ATTN OLDHAM, T. R., 22300 (20 COPIES)
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